A semi-supervised heat kernel pagerank MBO algorithm for data classification
نویسندگان
چکیده
منابع مشابه
A Semi-supervised Heat Kernel Pagerank Mbo Algorithm for Data Classification
We present a very efficient semi-supervised graph-based algorithm for classification of high-dimensional data that is motivated by the MBO method of Garcia-Cardona (2014) and derived using the similarity graph. Our procedure is an elegant combination of heat kernel pagerank and the MBO method applied to study semi-supervised problems. The timing of our algorithm is highly dependent on how quick...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملSemi-supervised Online Multiple Kernel Learning Algorithm for Big Data
In order to improve the performance of machine learning in big data, online multiple kernel learning algorithms are proposed in this paper. First, a supervised online multiple kernel learning algorithm for big data (SOMK_bd) is proposed to reduce the computational workload during kernel modification. In SOMK_bd, the traditional kernel learning algorithm is improved and kernel integration is onl...
متن کاملSpectral Kernel Learning for Semi-Supervised Classification
Typical graph-theoretic approaches for semisupervised classification infer labels of unlabeled instances with the help of graph Laplacians. Founded on the spectral decomposition of the graph Laplacian, this paper learns a kernel matrix via minimizing the leave-one-out classification error on the labeled instances. To this end, an efficient algorithm is presented based on linear programming, res...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Sciences
سال: 2018
ISSN: 1539-6746,1945-0796
DOI: 10.4310/cms.2018.v16.n5.a4